Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 445
Filtrar
1.
Nat Commun ; 15(1): 3877, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719846

RESUMEN

Empowering independent control of optical and acoustic modes and enhancing the photon-phonon interaction, integrated photonics boosts the advancements of on-chip stimulated Brillouin scattering (SBS). However, achieving acoustic waveguides with low loss, tailorability, and easy fabrication remains a challenge. Here, inspired by the optical anti-resonance in hollow-core fibers and acoustic anti-resonance in cylindrical waveguides, we propose suspended anti-resonant acoustic waveguides (SARAWs) with superior confinement and high selectivity of acoustic modes, supporting both forward and backward SBS on chip. Furthermore, this structure streamlines the design and fabrication processes. Leveraging the advantages of SARAWs, we showcase a series of breakthroughs for SBS within a compact footprint on the silicon-on-insulator platform. For forward SBS, a centimeter-scale SARAW supports a large net gain exceeding 6.4 dB. For backward SBS, we observe an unprecedented Brillouin frequency shift of 27.6 GHz and a mechanical quality factor of up to 1960 in silicon waveguides. This paradigm of acoustic waveguide propels SBS into a new era, unlocking new opportunities in the fields of optomechanics, phononic circuits, and hybrid quantum systems.

2.
Alzheimers Dement ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747519

RESUMEN

INTRODUCTION: This study addresses the urgent need for non-invasive early-onset Alzheimer's disease (EOAD) prediction. Using optical coherence tomography angiography (OCTA), we present a choriocapillaris model sensitive to EOAD, correlating with serum biomarkers. METHODS: Eighty-four EOAD patients and 73 controls were assigned to swept-source OCTA (SS-OCTA) or the spectral domain OCTA (SD-OCTA) cohorts. Our hypothesis on choriocapillaris predictive potential in EOAD was tested and validated in these two cohorts. RESULTS: Both cohorts revealed diminished choriocapillaris signals, demonstrating the highest discriminatory capability (area under the receiver operating characteristic curve: SS-OCTA 0.913, SD-OCTA 0.991; P < 0.001). A sparser SS-OCTA choriocapillaris correlated with increased serum amyloid beta (Aß)42, Aß42/40, and phosphorylated tau (p-tau)181 levels (all P < 0.05). Apolipoprotein E status did not affect choriocapillaris measurement. DISCUSSION: The choriocapillaris, observed in both cohorts, proves sensitive to EOAD diagnosis, and correlates with serum Aß and p-tau181 levels, suggesting its potential as a diagnostic tool for identifying and tracking microvascular changes in EOAD. HIGHLIGHTS: Optical coherence tomography angiography may be applied for non-invasive screening of Alzheimer's disease (AD). Choriocapillaris demonstrates high sensitivity and specificity for early-onset AD diagnosis. Microvascular dynamics abnormalities are associated with AD.

3.
Am J Sports Med ; : 3635465241247288, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38702986

RESUMEN

BACKGROUND: The tendon-bone interface (TBI) in the rotator cuff has a poor intrinsic capacity for healing, which increases the risk of retear after rotator cuff repair (RCR). However, facilitating regeneration of the TBI still remains a great clinical challenge. Herein, the authors established a novel strategy based on magnetic seeding to enhance the TBI regeneration. HYPOTHESIS: Magnetic seeding bone marrow mesenchymal stem cells labeled with superparamagnetic iron oxide (SPIO-BMSCs) into a biphasic scaffold can promote tendon-bone healing after RCR. STUDY DESIGN: Controlled laboratory study. METHODS: BMSCs were labeled with SPIOs. Prussian blue staining, CCK-8 tests, Western blot, and quantitative reverse transcription polymerase chain reaction (PCR) were used to determine the optimal effect concentration of SPIOs on cell bioactivities and abilities. Then SPIO-BMSCs were magnetically seeded into a biphasic scaffold under a magnetic field. The seeding efficacy was assessed by a scanning electron microscope, and the potential mechanism in chondrogenic differentiation after seeding SPIO-BMSCs into the scaffold was evaluated by Western blot and PCR. Furthermore, the effect of SPIO-BMSC/biphasic scaffold on tendon-bone healing after RCR using a rat model was examined using histological analysis, enzyme-linked immunosorbent assay, and biomechanical evaluation. RESULTS: BMSCs labeled with 100 µg/mL SPIO had no effect on cell bioactivities and the ability of chondrogenic differentiation. SPIO-BMSCs were magnetically seeded into a biphasic scaffold, which offered a high seeding efficacy to enhance chondrogenic differentiation of SPIO-BMSCs via the CDR1as/miR-7/FGF2 pathway for TBI formation in vitro. Furthermore, in vivo application of the biphasic scaffold with magnetically seeded SPIO-BMSCs showed their regenerative potential, indicating that they could significantly accelerate and promote TBI healing with superior biomechanical properties after RCR in a rat rotator cuff tear model. CONCLUSION: Magnetically seeding SPIO-BMSCs into a biphasic scaffold enhanced seeding efficacy to promote cell distribution and condensation. This construct enhanced the chondrogenesis process via the CDR1as/miR-7/FGF2 pathway and further promoted tendon-bone healing after RCR in a rat rotator cuff tear model. CLINICAL RELEVANCE: This study provides an alternative strategy for improving TBI healing after RCR.

4.
Front Psychol ; 15: 1345951, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38737957

RESUMEN

Introduction: While economics often interprets individual intertemporal choice preferences through the rationality assumption of utility maximization, the reality is that as emotional beings, individuals' preferences for intertemporal behavior are much more diverse and inconsistent. Prior research has predominantly focused on positive or negative emotions based on prospect theory, such as anxiety, anger, disgust, and depression. However, there has been relatively little research on how sadness affects individuals' preferences for immediate and future rewards. Methods: In this study, 170 college students are recruited as participants, and their emotions are primed with a video before engaging in an intertemporal task. Covariance analysis and logit regression model are established to examine the main and interactive effects of sadness on individuals' immediate reward preferences. Results: The findings reveal that sadness led individuals to prefer smaller immediate rewards, demonstrating a more myopic behavioral pattern, but didn't affect time discount rate. As the reward baseline increases, sadness's impact on immediate reward preferences is more pronounced, exacerbating individuals' myopic behavior. Discussion: In conclusion, these findings underscore the importance of considering emotional states in economic decision-making models and suggest avenues for future research to explore the complex dynamics of emotions and intertemporal choices.

5.
Materials (Basel) ; 17(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38730888

RESUMEN

In this study, a novel fabrication method was used to synthesize phenolic resin/phosphate hybrid coatings using aluminum dihydrogen phosphate (Al(H2PO4)3, hereafter denoted as Al), SC101 silica sol (Si) as the primary film-forming agent, and phenolic resin (PF) as the organic matrix. This approach culminated in the formation of Al+Si+PF organo-inorganic hybrid coatings. Fourier-transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) results confirmed the successful integration of hybrid structures within these coatings. The crystalline structure of the coatings post-cured at various temperatures was elucidated using X-ray diffraction (XRD). Additionally, the surface and cross-sectional morphologies were meticulously analyzed using scanning electron microscopy (SEM), offering insights into the microstructural properties of the coatings. The coatings' porosities under diverse thermal and temporal regimes were quantitatively evaluated using advanced image processing techniques, revealing a significant reduction in porosity to a minimum of 5.88% following a thermal oxidation process at 600 °C for 10 h. The antioxidant efficacy of the phosphate coatings was rigorously assessed through cyclic oxidation tests, which revealed their outstanding performance. Specifically, at 300 °C across 300 h of cyclic oxidation, the weight losses recorded for phosphate varnish and the phenolic resin-infused phosphate coatings were 0.15 mg·cm-2 and 0.09 mg·cm-2, respectively. Furthermore, at 600 °C and over an identical period, the weight reduction was noted as 0.21 mg·cm-2 for phosphate varnish and 0.085 mg·cm-2 for the hybrid coatings, thereby substantiating the superior antioxidation capabilities of the phenolic resin hybrid coatings in comparison to the pure phosphate varnish.

6.
Sensors (Basel) ; 24(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38676138

RESUMEN

Soft sensors have been extensively utilized to approximate real-time power prediction in wind power generation, which is challenging to measure instantaneously. The short-term forecast of wind power aims at providing a reference for the dispatch of the intraday power grid. This study proposes a soft sensor model based on the Long Short-Term Memory (LSTM) network by combining data preprocessing with Variational Modal Decomposition (VMD) to improve wind power prediction accuracy. It does so by adopting the isolation forest algorithm for anomaly detection of the original wind power series and processing the missing data by multiple imputation. Based on the process data samples, VMD technology is used to achieve power data decomposition and noise reduction. The LSTM network is introduced to predict each modal component separately, and further sum reconstructs the prediction results of each component to complete the wind power prediction. From the experimental results, it can be seen that the LSTM network which uses an Adam optimizing algorithm has better convergence accuracy. The VMD method exhibited superior decomposition outcomes due to its inherent Wiener filter capabilities, which effectively mitigate noise and forestall modal aliasing. The Mean Absolute Percentage Error (MAPE) was reduced by 9.3508%, which indicates that the LSTM network combined with the VMD method has better prediction accuracy.

7.
Talanta ; 275: 126141, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38677168

RESUMEN

The crucial cellular activities for maintaining normal cell functions heavily rely on the polarity of the endoplasmic reticulum (ER). Understanding how the polarity shifts, particularly in the context of ER autophagy (ER-phagy), holds significant promise for advancing knowledge of disorders associated with ER stress. Herein, a polarity-sensitive fluorescent probe CDI was easily synthesized from the condensation reaction of coumarin and dicyanoisophorone. CDI was composed of coumarin as the electron-donating moiety (D), ethylene and phenyl ring as the π-conjugation bridge, and malononitrile as the electron-accepting moiety (A), forming a typical D-π-A molecular configuration that recognition in the near-infrared (NIR) region. The findings suggested that as the polarity increased, the fluorescence intensity of CDI decreased, and it was accompanied by a redshift of emission wavelength at the excitation wavelength of 524 nm, shifting from 641 nm to 721 nm. Significantly, CDI exhibited a notable ability to effectively target ER and enabled real-time monitoring of ER-phagy induced by starvation or drugs. Most importantly, alterations in polarity can be discerned through in vivo imaging in mice model of rheumatoid arthritis (RA). CDI has been proven effective in evaluating the therapeutic efficacy of drugs for RA. ER fluorescent probe CDI can be optically activated in lysosomes, providing a sensitive tool for studying ER-phagy in biology and diseases.

8.
Opt Lett ; 49(8): 2177-2180, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38621105

RESUMEN

Advancements in photonic integration technology have enabled the effective excitation of simulated Brillouin scattering (SBS) on a single chip, boosting Brillouin-based applications such as microwave photonic signal processing, narrow-linewidth lasers, and optical sensing. However, on-chip circuits still require large pump power and centimeter-scale waveguide length to achieve a considerable Brillouin gain, making them both power-inefficient and challenging for integration. Here, we exploit the slow-light effect to significantly enhance SBS, presenting the first, to the best of our knowledge, demonstration of a slow-light Brillouin-active waveguide on the silicon-on-insulator (SOI) platform. By integrating a Bragg grating with a suspended ridge waveguide, a 2.1-fold enhancement of the forward Brillouin gain coefficient is observed in a 1.25 mm device. Furthermore, this device shows a Brillouin gain coefficient of 1,693 m-1W-1 and a mechanical quality factor of 1,080. The short waveguide length reduces susceptibility to inhomogeneous broadening, enabling the simultaneous achievement of a high Brillouin gain coefficient and a high mechanical quality factor. This approach introduces an additional dimension to enhance acousto-optic interaction efficiency in the SOI platform and holds significant potential for microwave photonic filters and high spatial resolution sensing.

9.
Pest Manag Sci ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38482986

RESUMEN

BACKGROUND: The discovery of agricultural fungicide candidates from natural products is one of the key strategies for developing environment friendly agricultural fungicides with high efficiency, high selectivity and unique modes-of-action. Based on previous work, a series of novel α-methylene-γ-butyrolactone (MBL) derivatives containing benzothiophene moiety were designed and synthesized. RESULTS: The majority of the proposed compounds displayed moderate to considerable antifungal efficacy against the tested pathogenic fungi and oomycetes, some exhibiting broad spectrum antifungal activity. Notably, compounds 2 (3-F-Ph) and 7 (4-Cl-Ph) showed excellent antifungal activity against Rhizoctonia with half maximal effective concentration (EC50) values of 0.94 and 0.99 mg L-1, respectively, comparable to the commercial fungicide tebuconazole (EC50 = 0.96 mg L-1), and also displayed significant inhibitory effects against V alsa mali with EC50 values of 2.26 and 1.67 mg L-1, respectively - better than famoxadone and carabrone. The in vivo protective and curative effects against R. solani of compound 2 were 57.2% and 53.7% at 100 mg L-1, respectively, which were equivalent to tebuconazole (51.6% and 52.4%). Further investigations found that compound 2 altered the ultrastructure of R. solani cell, significantly increased the relative conductivity of the cells, and reduced the activity of complex III in a dose-dependent manner. Molecular docking results showed that compound 2 matched well with the Qo pocket. CONCLUSION: The results revealed that MBL derivatives containing benzothiophene moiety are promising antifungal candidates and provide a new backbone structure for further optimization of novel fungicides. © 2024 Society of Chemical Industry.

10.
Opt Lett ; 49(6): 1465-1468, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489426

RESUMEN

The acousto-optic interaction known as stimulated Brillouin scattering (SBS) has emerged as a fundamental principle for realizing crucial components and functionalities in integrated photonics. However, the main challenge of integrating Brillouin devices is how to effectively confine both optical and acoustic waves. Apart from that, the manufacturing processes for these devices need to be compatible with standard fabrication platforms and streamlined to facilitate their large-scale integration. Here, we demonstrate a novel, to the best of our knowledge, suspended nanowire structure that can tightly confine photons and phonons. Furthermore, tailored for this structure, we introduce a loading-effect-based three-dimensional microfabrication technique, compatible with complementary metal-oxide-semiconductor (CMOS) technology. This innovative technique allows for the fabrication of the entire structure using a single-step lithography exposure, significantly streamlining the fabrication process. Leveraging this structure and fabrication scheme, we have achieved a Brillouin gain coefficient of 1100 W-1m-1 on the silicon-on-insulator platform within a compact footprint. It can support a Brillouin net gain over 4.1 dB with modest pump powers. We believe that this structure can significantly advance the development of SBS on chip, unlocking new opportunities for a large-scale integration of Brillouin-based photonic devices.

11.
Org Lett ; 26(11): 2309-2314, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38466078

RESUMEN

2-Alkylpyridines are a privileged scaffold throughout the realm of organic synthesis and play a key role in natural products, pharmaceuticals, and agrochemicals. Herein, we report the first B-alkyl Suzuki cross-coupling of 2-pyridyl ammonium salts to access functionalized 2-alkylpyridines. The use of well-defined, operationally simple Pd-NHCs permits for an exceptionally broad scope of the challenging B-alkyl C-N cross-coupling with organoboranes containing ß-hydrogen, representing a novel method for the discovery of highly sought-after molecules for plant protection.

12.
Sheng Wu Gong Cheng Xue Bao ; 40(3): 921-930, 2024 Mar 25.
Artículo en Chino | MEDLINE | ID: mdl-38545987

RESUMEN

Pantoea alhagi NX-11 exopolysaccharide (PAPS) is a novel microbial biostimulant that enhances crop resistance to salt and drought stress. It is biodegradable and holds promising applications in improving agricultural yield and efficiency. However, the fermentation process of PAPS exhibits a high viscosity due to low oxygen transfer efficiency, which hinders yield improvement and downstream processing. This study aimed to investigate the effects of seven oxygen carriers (Span 80, Span 20, Tween 80, Tween 20, glycerin, olive oil, and soybean oil) on fermentation yield. The results showed that the addition of 0.5% (V/V) Tween 20 significantly enhanced the production of PAPS. Moreover, the introduction of 0.5% (V/V) Tween 20 in a 7.5 L fermenter resulted in a PAPS titer of (16.85±0.50) g/L, which was 17.70% higher than that of the control group. Furthermore, the rheological characterization and the microstructure analysis of the polysaccharide products revealed that the characteristic structure of polysaccharides remained unchanged in the oxygen carrier treated group, but their viscosity increased. These findings may facilitate enhancing the biosynthesis efficiency of other polymer products.


Asunto(s)
Pantoea , Polisorbatos , Polisorbatos/química , Polisacáridos , Oxígeno
13.
Int J Biol Macromol ; 264(Pt 1): 130536, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38432273

RESUMEN

Tremella fuciformis polysaccharide (TFPS) is a natural mushroom mucopolysaccharide widely used in health foods, medical care, cosmetic and surgical materials. In this study, we developed an efficient strategy for the repeated batch production of highly bioactive TFPS from the agro-industrial residue cane molasses. Cane molasses contained 39.92 % sucrose (w/w), 6.36 % fructose and 3.53 % glucose, all of which could be utilized by T. fuciformis spores, whereas, the TFPS production efficiency only reached 0.74 g/L/d. Corn cobs proved to be the best immobilized carrier that could tightly absorb spores and significantly shorten the fermentation lag period. The average yield of TFPS in eight repeated batch culture was 5.52 g/L with a production efficiency of 2.04 g/L/d. The average fermentation cycle after optimization was reduced by 61.61 % compared with the initial conditions. Compared to glucose as a carbon source, cane molasses significantly increased the proportion of low-molecular-weight TFPS (TFPS-2) in total polysaccharides from 3.54 % to 17.25 % (w/w). Moreover, TFPS-2 exhibited potent antioxidant capacity against four free radicals (O2-, ABTS+, OH, and DPPH). In conclusion, this study lays the foundation for the efficient conversion of cane molasses and production of TFPS with high bioactivity.


Asunto(s)
Basidiomycota , Técnicas de Cultivo Celular por Lotes , Melaza , Bastones , Polisacáridos/farmacología , Polisacáridos/química , Fermentación , Glucosa
14.
Microbiol Spectr ; 12(5): e0018624, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38511949

RESUMEN

Inoculation with plant growth-promoting rhizobacteria (PGPR) strains has promoted plant growth and decreased nitrous oxide (N2O) emissions from agricultural soils simultaneously. However, limited PGPR strains can mitigate N2O emissions from agricultural soils, and the microbial ecological mechanisms underlying N2O mitigation after inoculation are poorly understood. In greenhouse pot experiments, the effects of inoculation with Stutzerimonas stutzeri NRCB010 and NRCB025 on tomato growth and N2O emissions were investigated in two vegetable agricultural soils with contrasting textures. Inoculation with NRCB010 and NRCB025 significantly promoted tomato growth in both soils. Moreover, inoculation with NRCB010 decreased the N2O emissions from the fine- and coarse-textured soils by 38.7% and 52.2%, respectively, and inoculation with NRCB025 decreased the N2O emissions from the coarse-textured soil by 76.6%. Inoculation with NRCB010 and NRCB025 decreased N2O emissions mainly by altering soil microbial community composition and the abundance of nitrogen-cycle functional genes. The N2O-mitigating effect might be partially explained by a decrease in the (amoA + amoB)/(nosZI + nosZII) and (nirS + nirK)/(nosZI + nosZII) ratios, respectively. Soil pH and organic matter were key variables that explain the variation in abundance of N-cycle functional genes and subsequent N2O emission. Moreover, the N2O-mitigating effect varied depending on soil textures and individual strain after inoculation. This study provides insights into developing biofertilizers with plant growth-promoting and N2O-mitigating effects. IMPORTANCE: Plant growth-promoting rhizobacteria (PGPR) have been applied to mitigate nitrous oxide (N2O) emissions from agricultural soils, but the microbial ecological mechanisms underlying N2O mitigation are poorly understood. That is why only limited PGPR strains can mitigate N2O emissions from agricultural soils. Therefore, it is of substantial significance to reveal soil ecological mechanisms of PGPR strains to achieve efficient and reliable N2O-mitigating effect after inoculation. Inoculation with Stutzerimonas stutzeri strains decreased N2O emissions from two soils with contrasting textures probably by altering soil microbial community composition and gene abundance involved in nitrification and denitrification. Our findings provide detailed insight into soil ecological mechanisms of PGPR strains to mitigate N2O emissions from vegetable agricultural soils.


Asunto(s)
Microbiota , Óxido Nitroso , Microbiología del Suelo , Suelo , Solanum lycopersicum , Verduras , Óxido Nitroso/metabolismo , Suelo/química , Verduras/microbiología , Verduras/crecimiento & desarrollo , Solanum lycopersicum/microbiología , Solanum lycopersicum/crecimiento & desarrollo , Pseudomonas stutzeri/metabolismo , Pseudomonas stutzeri/crecimiento & desarrollo , Pseudomonas stutzeri/genética , Agricultura/métodos
15.
Adv Sci (Weinh) ; 11(15): e2306399, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38348540

RESUMEN

Traumatic brain injury (TBI) leads to progressive neurodegeneration that may be caused by chronic traumatic encephalopathy (CTE). However, the precise mechanism remains unclear. Herein, the study identifies a crucial protein, axonemal dynein light intermediate polypeptide 1 (DNALI1), and elucidated its potential pathogenic role in post-TBI neurodegeneration. The DNALI1 gene is systematically screened through analyses of Aging, Dementia, and TBI studies, confirming its elevated expression both in vitro and in vivo. Moreover, it is observed that altered DNALI1 expression under normal conditions has no discernible effect. However, upon overexpression, DNALI1 inhibits autophagosome-lysosome fusion, reduces autophagic flux, and exacerbates cell death under pathological conditions. DNALI1 silencing significantly enhances autophagic flux and alleviates neurodegeneration in a CTE model. These findings highlight DNALI1 as a potential key target for preventing TBI-related neurodegeneration.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Encefalopatía Traumática Crónica , Humanos , Autofagosomas/metabolismo , Autofagosomas/patología , Lesiones Traumáticas del Encéfalo/complicaciones , Encefalopatía Traumática Crónica/etiología , Encefalopatía Traumática Crónica/patología , Autofagia , Lisosomas/metabolismo
16.
Nat Aging ; 4(3): 414-433, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38321225

RESUMEN

The incidence of intestinal diseases increases with age, yet the mechanisms governing gut aging and its link to diseases, such as colorectal cancer (CRC), remain elusive. In this study, while considering age, sex and proximal-distal variations, we used a multi-omics approach in non-human primates (Macaca fascicularis) to shed light on the heterogeneity of intestinal aging and identify potential regulators of gut aging. We explored the roles of several regulators, including those from tryptophan metabolism, in intestinal function and lifespan in Caenorhabditis elegans. Suggesting conservation of region specificity, tryptophan metabolism via the kynurenine and serotonin (5-HT) pathways varied between the proximal and distal colon, and, using a mouse colitis model, we observed that distal colitis was more sensitive to 5-HT treatment. Additionally, using proteomics analysis of human CRC samples, we identified links between gut aging and CRC, with high HPX levels predicting poor prognosis in older patients with CRC. Together, this work provides potential targets for preventing gut aging and associated diseases.


Asunto(s)
Colitis , Serotonina , Animales , Humanos , Anciano , Serotonina/metabolismo , Triptófano/metabolismo , Multiómica , Colitis/metabolismo , Envejecimiento/genética , Caenorhabditis elegans/metabolismo , Primates/metabolismo
17.
Int J Biol Macromol ; 263(Pt 2): 130425, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38412938

RESUMEN

Liquid fermentation could revolutionize mushroom polysaccharide production, but the low temperature constraint hampers the process. This study implemented adaptive laboratory evolution (ALE) to enhance the thermotolerance of Naematelia aurantialba strains and increase expolysaccharide production. After 75 ALE cycles at 30 °C, the adaptive strain surpassed the wild-type strain by 5 °C. In a 7.5 L fermentor at 30 °C, the ALE strain yielded 17 % more exopolysaccharide than the wild type strain at 25 °C. Although the exopolysaccharide synthesized by both strains shares a consistent monosaccharide composition, infrared spectrum, and glycosidic bond composition, the ALE strain's exopolysaccharide has a larger molecular weight. Furthermore, the ALE strain's exopolysaccharide exhibits superior cryoprotection performance compared to that produced by the original strain. The adapted strain demonstrated lower ROS levels and increased activity of antioxidant enzymes, indicating improved performance. Fatty acid profiling and transcriptomics revealed reconfiguration of carbohydrate metabolism, amino acid metabolism, and membrane lipid synthesis in thermophilic strains, maintaining cellular homeostasis and productivity. This study provides efficient strains and fermentation methods for high-temperature mushroom polysaccharide production, reducing energy consumption and costs.


Asunto(s)
Basidiomycota , Reactores Biológicos , Polisacáridos , Temperatura , Fermentación
18.
Artículo en Inglés | MEDLINE | ID: mdl-38381637

RESUMEN

Salient object ranking (SOR) aims to segment salient objects in an image and simultaneously predict their saliency rankings, according to the shifted human attention over different objects. The existing SOR approaches mainly focus on object-based attention, e.g., the semantic and appearance of object. However, we find that the scene context plays a vital role in SOR, in which the saliency ranking of the same object varies a lot at different scenes. In this paper, we thus make the first attempt towards explicitly learning scene context for SOR. Specifically, we establish a large-scale SOR dataset of 24,373 images with rich context annotations, i.e., scene graphs, segmentation, and saliency rankings. Inspired by the data analysis on our dataset, we propose a novel graph hypernetwork, named HyperSOR, for context-aware SOR. In HyperSOR, an initial graph module is developed to segment objects and construct an initial graph by considering both geometry and semantic information. Then, a scene graph generation module with multi-path graph attention mechanism is designed to learn semantic relationships among objects based on the initial graph. Finally, a saliency ranking prediction module dynamically adopts the learned scene context through a novel graph hypernetwork, for inferring the saliency rankings. Experimental results show that our HyperSOR can significantly improve the performance of SOR.

19.
J Neurochem ; 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38382918

RESUMEN

Ferroptosis has been implicated in several neurological disorders and may be therapeutically targeted. However, the susceptibility to ferroptosis varies in different cells, and inconsistent results have been reported even using the same cell line. Understanding the effects of key variables of in vitro studies on ferroptosis susceptibility is of critical importance to facilitate drug discoveries targeting ferroptosis. Here, we showed that increased cell seeding density leads to enhanced resistance to ferroptosis by reducing intracellular iron levels. We further identified iron-responsive protein 1 (IRP1) as the key protein affected by cell density, which affects the expression of ferroportin or transferrin receptor and results in altered iron levels. Such observations were consistent across different cell lines, indicating that cell density should be tightly controlled in studies of ferroptosis. Since cell densities vary in different brain regions, these results may also shed light on selective regional vulnerability observed in neurological disorders.

20.
Sci Total Environ ; 917: 170395, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38307277

RESUMEN

In the mangrove growth area, the availability of high-quality optical images is limited throughout the year due to cloud cover, precipitation, and sensor revisiting cycles. In the worst-case scenario, severe conditions may lead to the unavailability of, causing variations in monitoring times for mangroves across different years. This significantly impacts the accuracy of long-term sequence monitoring of mangrove dynamics. To monitor long-term dynamic changes in mangrove spatial distribution, area, and ecology we reconstructed comprehensive time series images from 2000 to 2020 based on Landsat, Sentinel-2, and moderate-resolution imaging spectroradiometer (MODIS) images. We employed neighborhood-similar pixel interpolator (NSPI) strip filling, Fmask and temporal NSPI cloud-removal and filling, and FSDAF model to monitor the long-term dynamic changes in mangrove spatial distribution, area, and ecology. All three methods effectively reconstructed the images, with the FSDAF model exhibiting the greatest accuracy. The reconstructed images suggested that the mangroves demonstrated an overall growth trend from 2000 to 2020, with an increase from 3796.74 ha to 7676.89 ha, an increase of approximately 3880.15 ha over 20 years. Despite this growth, the number of patches gradually increased, the degree of fragmentation consistently worsened, and the landscape shape gradually became irregular. The study area demonstrated pronounced overall heterogeneity, with a gradually increase in the degree of dispersion, indicating evident overall instability. Additionally, the centroid of the mangroves moved towards the ocean, which complicated their growth environment and posed a serious threat to their growth and recovery. Anthropogenic disturbance is the main factor driving changes in mangrove areas. Driving factors that affected the change in mangrove areas were ranked as follows: GDP > highway mileage > population density > precipitation > humidity > wind speed > sunshine > temperature. The results of this study provide comprehensive data for the protection and restoration of mangroves.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...